keskiviikko 24. lokakuuta 2012

Oppivat järjestelmät

Tänään käytiin läpi kappaleen 5 alku, nimeltään Oppivat järjestelmät.

Oppivien järjestelmien ideana on esittää järjestelmälle näytteitä ja opettaa se tuottamaan oikea ulostulo kun sille esitetään opetusjoukkoon kuulumaton uusi näyte. Yksi oppivien järjestelmien osajoukko ovat luokittelijat, jossa ulostulo kertoo luokan johon esitetty näyte kuuluu.
Ensimmäisellä tunnilla aihetta pohjustettiin esimerkeillä viimeaikaisista hahmontunnistuskilpailuista: Lisäksi vilkaistiin Kaggle.com-alustaa, johon vastaavia kilpailuja ilmestyy säännöllisesti. Toisella tunnilla tutustuttiin teoriaan. Suosittuja luokittelualgoritmeja ovat ainakin seuraavat (kasvavan monimutkaisuuden järjestyksessä):
Näistä kolme ensimmäistä käsiteltiin luennolla. KNN on ideana yksinkertaisin: kaikki opetusdata pidetään muistissa ja uuden näytteen tullessa etsitään k samanlaisinta näytettä, ja valitaan näistä yleisin luokka. Tyypillisesti k on vajaan kymmenen luokkaa, mutta voi olla suurempikin; esim. 30. Mitä suurempi k on, sitä sileämpi luokkarajasta tulee. Vaikka KNN:n luokittelutulos onkin melko hyvä, on sen ongelmana suuri muistin tarve sekä laskennallinen kompleksisuus. Koko opetusjoukko täytyy nimittäin säilyttää muistissa, josta etsitään k lähintä naapuria jokaisen luokittelun yhteydessä. Sekä tilantarve että etsinnän vaatima aika voivat olla ongelmallisia jos opetusjoukossa on esim. 100000 alkiota.

Luentomonisteen seuraava menetelmä on LDA. Ennen sitä pruju esittelee yksinkertaisemman version samasta ideasta, jossa raja piirretään luokkien keskipisteiden puoliväliin. Tämä ei kuitenkaan toimi, jos luokat ovat "limittäin". Näin päädytäänkin LDA:han, joka ottaa limittäisyyden huomioon.

LDA:ta parempi tulos saadaan (yleensä) käyttämällä SVM:ää. SVM:n ominaisuutena on luokkien välisen marginaalin maksimointi. Tästä on iloa eritoten, jos data on korkeaulotteista. Lisäksi se tarjoaa paremman vaihtoehdon haluttaessa käyttää ns.kernelitemppua, joka kuvaa datan keinotekoisesti korkeampiulotteiseen avaruuteen. Korkeampiulotteisessa avaruudessa on enemmän tilaa, ja siellä on tyypillisesti helpompi löytää lineaarinen päätöspinta joukkojen väliin. Dataa ei konkreettisesti tarvitse kuitenkaan kuvata toiseen avaruuteen, koska kernelitemppu tekee saman yksinkertaisesti korvaamalla kaikki sisätulot sopivalla kernel-funktiolla.

SVM on ollut suosituin luokittelualgoritmi tällä vuosikymmenellä, koska se ei ole herkkä ylioppimisilmiölle. Lisäksi suosion syynä on sen yksinkertainen ja laskennallisesti tehokas toteutus, mutta mukana lienee myös hypeä liittyen optimointialgoritmin syvälliseen matematiikkaan jonka vain harva ymmärtää kunnolla.

Ei kommentteja:

Lähetä kommentti